Convex Sets and Convex Combinations on Complex Linear Spaces
نویسندگان
چکیده
منابع مشابه
Convex Sets and Convex Combinations on Complex Linear Spaces
Let V be a non empty zero structure. An element of Cthe carrier of V is said to be a C-linear combination of V if: (Def. 1) There exists a finite subset T of V such that for every element v of V such that v / ∈ T holds it(v) = 0. Let V be a non empty additive loop structure and let L be an element of Cthe carrier of V . The support of L yielding a subset of V is defined by: (Def. 2) The support...
متن کاملConvex Sets and Convex Combinations
Convexity is one of the most important concepts in a study of analysis. Especially, it has been applied around the optimization problem widely. Our purpose is to define the concept of convexity of a set on Mizar, and to develop the generalities of convex analysis. The construction of this article is as follows: Convexity of the set is defined in the section 1. The section 2 gives the definition...
متن کاملSome results on functionally convex sets in real Banach spaces
We use of two notions functionally convex (briefly, F--convex) and functionally closed (briefly, F--closed) in functional analysis and obtain more results. We show that if $lbrace A_{alpha} rbrace _{alpha in I}$ is a family $F$--convex subsets with non empty intersection of a Banach space $X$, then $bigcup_{alphain I}A_{alpha}$ is F--convex. Moreover, we introduce new definition o...
متن کاملOn Convex Topological Linear Spaces.
Introduction. In an earlier article [9] the author developed at some length the theory of certain mathematical objects which he called linear systems. It is the purpose of the present paper to apply this theory to the study of convex topological linear spaces. This application is based on the many-to-one correspondence between convex topological linear spaces and linear systems which may be set...
متن کاملFunctionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Formalized Mathematics
سال: 2008
ISSN: 1898-9934,1426-2630
DOI: 10.2478/v10037-008-0018-y